

Paolo Canonico

Como 30.11.2017

The Starting point in 2004

A Vision for 2020

- Move <u>from commodities to specialty</u>
 <u>products</u> made in high-tech processes
- Increased use of <u>textiles as material of</u> <u>choice</u> in many industrial sectors and technical application niches
- Move <u>from mass production to</u> <u>customisation</u>, personalisation, ondemand production and services

Lower Volumes – Higher Values

Industry Evolution 2004-2015

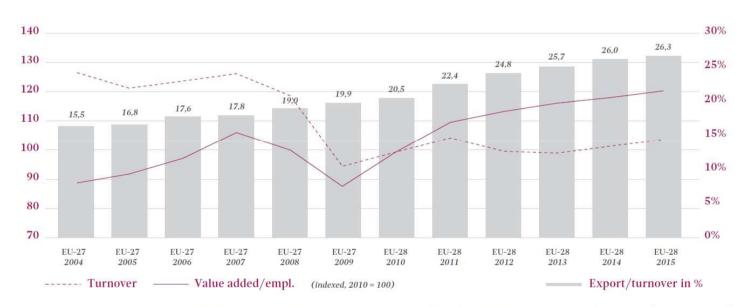
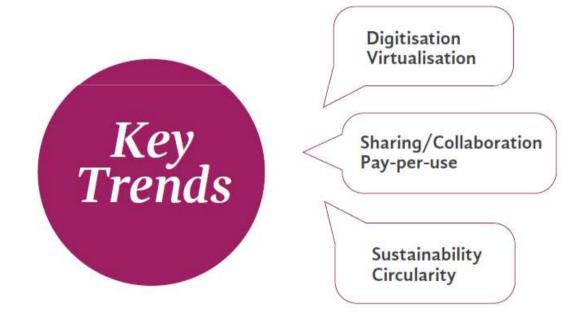


Fig. 1: Evolution of industry turnover, exports and labour productivity between 2004 and 2015 (source: Euratex)

Turnover -19% | Value Added +36% | Exports +37%

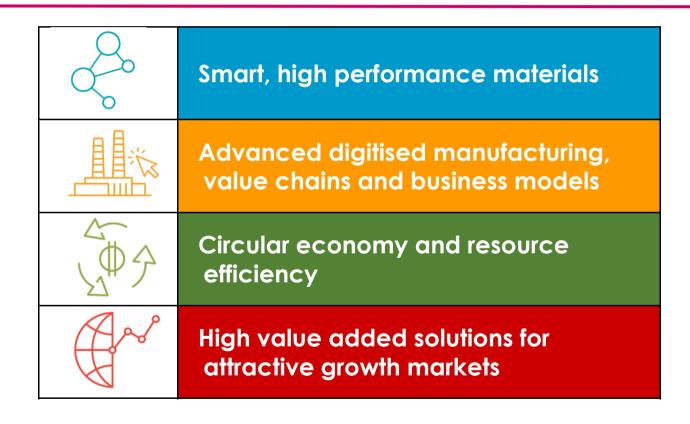
Near-term Trends



- Growth of global consumer markets
- Growth of technical end markets for textiles
- Faster time-to-market + smaller orders = opportunities for efficient local production
- More demand for system solutions (material+technology, product+service)

Positive Drivers for European Industry

Long-term Trends

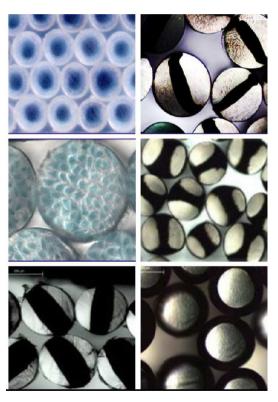


Strategic Innovation Themes & Research Priorities

The Building Blocks for the 4th Industrial Revolution of Textiles & Clothing

Innovation Theme I Smart, high-performance materials

- 1.1 High-performance fibres and textile materials
- 1.2 Novel 1, 2 and 3-dimensional fibre based structures
- 1.3 Multifunctional textile surfaces and related processing technologies
- 1.4 E-textiles for smart structures, functional interiors or smart wearable systems

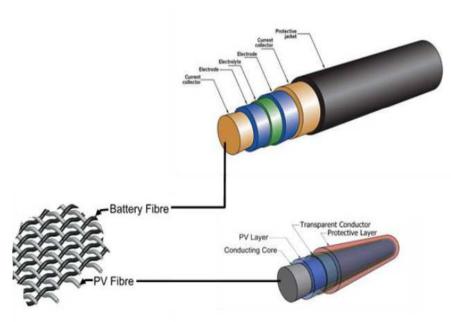


Nano-structured polymer based conductive fibers

- Development of conductive fibres for smart materials applications.
- Thermoplastics and carbon-based conductive polymer (CPC)

Smart yarns

Intelligent Multi-reactive textiles Piezoelectric Fibres


 Development of new Tri-component piezoelectric fibres for sensor / energy harvesting applications – Processing of Fibre devices!

3-component fibers or coated bi-component fibers

Multi layers yarn

Development of photovoltaic energy harvesting fibres and energy storage fibres (battery) integrated by weaving or knitting with control electronics into a textile.

New yarn properties by Electrochemistry, Plasma and LASER-Treatment

- Conductive, semi conductive (n or p), antielectrostatic,
- Heat conducting,
- Magnetic,
- Light emitting (electroluminescence, fluorescence, phosphorescence),
- Light reflective (UV, VIS NIR, IR,..),
- Photosensitive,
- Absorptive,
- Interactive
 - · Release of active substances
 - Thermo-, photo-, electrochromic,
 - Properties changes
 (volume, elastic modul, conductivity, hydro-, oleophobic, hydro-, oleophile, etc.)

Innovation Theme II

Advanced digitised manufacturing, value chains and business models

- 2.1 New manufacturing technologies for efficient realisation of complex textile and composite structures
- 2.2 Digitisation and flexibilisation of production processes and factories
- 2.3 Virtual modelling and design of fibre, and textile, based materials and products
- 2.4 Digitisation of the full textile-fashion value chain
- 2.5 New digitally-enabled business models

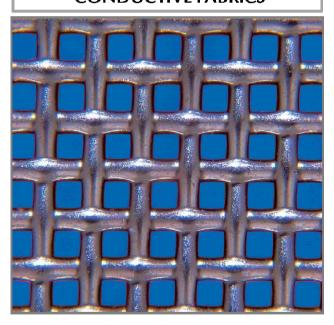
Innovation Theme III Circular Economy and Resource Efficiency

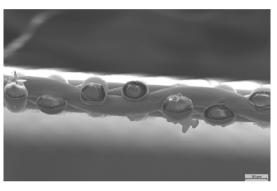
- 3.1 Novel flexible process technologies to save water, energy and chemicals
- 3.2 High-tech textile recycling for circular economy concepts
- 3.3 Sustainable substitutes for hazardous or restricted textile processing and chemicals and bio-chemistry based textile processing
- 3.4 Bio-refinery concepts utilising European biomass or waste for textile fibres
- 3.5 Greater use of EU-origin natural fibres

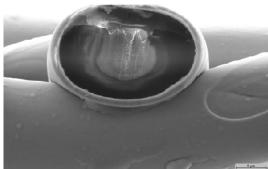
Innovation Theme IV High value added solutions for attractive growth markets

- 4.1 Textile-based functional and smart products for health, sports and personal protection
- 4.2 Textile solutions to resource and protect a growing global population
- 4.3 Textile solutions for safe and energyefficient buildings and smart interiors
- 4.4 Textile solutions for light-weight, clean and safe transport systems
- 4.5 Personalised fashion and functional wear products

Smart textiles




- High flexibility/foldability/elasticity
- Breathability
- High mechanical and fatigue resistance
- Low thickness
- Possibility of insulation: Solder Mask and Epoxy resin
- Possibility of producing shaped patterns
- Possibility of cables embedding


Surface modification

METAL COATINGS FOR CONDUCTIVE FABRICS

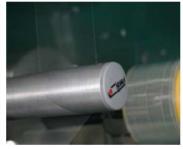
Added value by Coating Processes

- Foulard
- Gravure printing
- Knife coating
- Doctor Blade
- Slot die coating
- Micro-roller coating
- Thermal curing (1m)
- Lamination

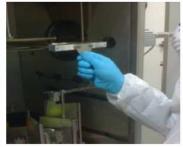
Printing Technologies

Slot die Coating; Knife/Doctor blade; Spray and Dip coating

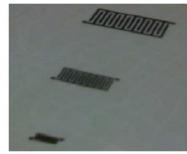
R2R Gravure


Lamination& Encapsulation

Screen Printing


Inkjet Printing

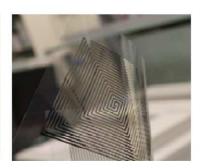
LTE thermal evaporation


Flexible electronic

Printed capacitive sensors


Printed Biosensors

Stretchable circuits


Printed touchpads

Printed Biosensors

Stretchable elements

3 key factors for e-textiles

- Electronics devices smaller and smaller, in future also flexible and lighter
- Software is becoming more important than hardware, therefore new solutions have to be powerful and focused on the efficiency of the software
- The connection of the sensor to the electronic device is still an issue to be solved

Implementation

How to make the 4th Industrial Revolution of Textiles & Clothing happen?

Knowledge & Skills

- 600,000 job openings in T/C sector until 2025
- Enormous generational shift to achieve
- Balance of new knowledge (scientific, digital, sustainable, new business models) and traditional skills (design, production, quality management, service)
- Sectoral education and training programmes and facilities need modernisation
- Integration of practical oriented learning at all levels (schools, colleges, learning labs and factories, at the workplace, on-line)

Europe needs a new generation of textile workers and entrepreneurs

Regional Excellence

- More and stronger textile innovation clusters needed
- More investment in open technology infrastructure (technology centres, pilot plants, design and maker labs)
- More innovation business support services (coaching, technology scouting, financing, IPR, business start-up & incubation)
- Better exploitation of Smart Specialisation policies and related structural funds

Regional competences and infrastructures are the key to SME innovation

European Support

More opportunities for collaborative research & innovation in HORIZON 2020 through:

- Smaller, simpler projects
- Stronger economic impact evaluation for less science-driven projects
- SME funding instruments that match size and speed of SME operations
- ETP's as a managers of small-scale funding programmes

HORIZON 2020 needs to better serve research & innovation of manufacturing SME's

Key Messages - I

- The digital, high-tech, smart and sustainable T/C industry transformation is in full swing
- Global markets for innovative textile and clothing products are huge & growing (€ 2 trillion+) and offer massive opportunities for innovators
- Co-operation among Industries and Research Centers/University is a key factor
- Multidisciplinary approach is needed and co-operation among industries of different sectors is required
- Advanced technologies, new business models, human resource development & regional excellence are the key to success

Key Messages - II

-SAATI

Knowledge is a relationship

In today's world, innovation is, above all, based on relationships and collaboration. Consult the outside world, involve key players as the process develops, and **share and compare your knowledge.**

Innovation is a proactive culture

The future is never as we expect it to be. Choose a direction, choose a method, but then **stay open to the unexpected.**

Customers are the best partners

Customers and clients represent reservoirs of knowledge in local markets, essential to anticipating responses to future demands.

Their participation is critical to innovation.

Why not is better than why

Why not is the key to leaving your comfort zone.

Broaden your horizons, expand your knowledge, and *go beyond the limits of what you already know.*

company overview